模块19:多边形和圆面积

您可以根据需要使用计算器。

我们已经看到了周长多边形是外部周围的距离。周长是一定长度,即用线性单元(脚,厘米,数英里等)测量它。这区域多边形是多边形内部的二维空间的量,它以方形单元测量:平方英尺,平方厘米,平方英里等。

您可以随时将区域视为完全填充形状所需的正方形。

练习

1。找到这个矩形的区域。

2。找到这个广场的区域。

矩形和正方形

当然有公式寻找矩形和正方形的区域;我们不必计算小方块。

矩形

A = LW.[1]或者a = bh.

广场地区

a = s ^ 2

练习

找到每个数字的区域。

3.

4.

平行四边形

另一个普通多边形是平行四边形,它看起来像一个倾斜的矩形。顾名思义,相对侧对并联并具有相同的长度。请注意,如果我们将一侧标记为平行四边形,则我们的垂直高度不是另一方面的长度。

以下一组图表显示我们可以切断平行四边形的一部分,并将碎片重新排列成与原始平行线相同的基础和高度的矩形。具有基地的平行四边形7.单位和垂直高度6.单位转变为一个7.经过6.矩形,带有一个区域42.方形单位。

因此,还提供了平行四边形区域的公式与矩形区域的公式相同,只要我们小心使用底座和高度,必须垂直。

平行四边形区域

a = bh.

练习

找到每个平行线的区域。

5。

6。

三角形

当我们需要找到三角形的区域时,我们需要识别垂直于该基础的基础和高度。如果三角形是钝的,则可能必须想象三角形外部的高度并扩展基线以满足它。

如下所示,任何三角形都可以加倍以形成平行四边形。因此,三角形的面积是具有相同基座和高度的平行四边形区域的一半。

三角形区域

a = \ frac {1} {2} bh或者a = bh \ div2

与平行四边形一样,请记住,高度必须垂直于基座。

练习

找到每个三角形的区域。

7。

8。

9。

10。

梯形

一个少数常见的四边形是梯形,它恰好是一对并行侧面,我们称之为基地。下面所示的第一示例称为等腰梯形,因为与等腰三角形一样,其两个非平行侧面具有相等的长度。

有许多方法可以展示区域公式来自的地方,但解释在视频中更好,因为它们可以是动画的。[2][3][4]

梯形

a = \ frac {1} {2} h(b_1 + b_2)或者a =(b_1 + b_2)h \ div2

不要被下标吓倒B_1.B_2.;它只是使用相同的变量字母命名两个不同的测量的方法。(很多人称之为基地一个B.反而;随意写它,无论你更喜欢哪种方式。)无论你称之为什么,你只需添加两个基础,乘以高度,并花费一半。

练习

找到每个梯形的区域。

11.

12.

13。


具有方形网格图案的圆形华夫饼干圆的区域是\ PI.乘以半径的平方:a = \ pi {r ^ 2}。单位仍然是方形单位,即使圆圈是圆形的。(想想圆形华夫饼干上的方块。)因为我们不能符合整个方块或圆内部的正方形的精确分数,所以圆的面积将是近似的。

circle

a = \ pi {r ^ 2}

请记住\ pi \ attum3.1416

练习

找到每个圆的区域。舍入到最接近的十分之一或三个重要人物,无论似乎是合适的。

14。半径的圆圈标记为3厘米

15。半径的圆圈标记为4厘米

16。一个直径标记为14的圆圈

17。一个直径标记为9的圆圈

每个数字都是圆的一小部分。计算每个区域。

18。四分之一圈的半径是5.米。

19。从一个直径的圆圈中取出了四分之一圆圈7.脚。


  1. 您可能会选择在此处使用大写字母,因为小写字母“L”可以很容易地误以为数字“1”。
  2. https://youtu.be/ytnyrpcza9c
  3. https://youtu.be/wzto3oerges.
  4. https://youtu.be/ulhc6br2veg.

执照

Creative Commons atticution-Noncommercial-Sharealike的图标4.0国际许可证

技术数学经过摩根大通在a下获得许可Creative Commons归因 - 非商业 - Sharealike 4.0国际许可证,除非另有说明。